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Second Semester M.Sc. Degree Examination, September 2022
Mathematics
MM 221 — ABSTRACT ALGEBRA
(2020 Admission Onwards)

Time : 3 Hours Max. Marks : 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

1.

Let G=U(16), H={1,15} and K = {1, 9}. Are H and K isomorphic? Are G/H and
G/K isomorphic?

Prove that a group of order 105 contains a subgroup of order 35.

Express x® —x as a product of irreducible polynomials over Z».
Construct a field of order 9.
Find @.,(x).

If a and b are constructible numbers, give a geometric proof that a + b is
constructible.

Show, by an example, that if the order of a finite abelian group is divisible by 4,
the group need not have a cyclic subgroup of order 4.

Find the minimal polynomial for 1+%/2 +¥/4 over Q.

(5 x 3 =15 Marks)

P.T.O.



SECTION - B

Answer all questions. Each question carries 12 marks.

9.

10.

11.

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

(A) (a)
(b)

Let G be an abelian group of prime-power order and let a be an
element of maximal order in G. Prove that G is the internal direct
product of (a)xK for some subgroup K in G. 9

Show, by example, that in a factor group G/H it can happen that
aH =bH but [a = |b|. 3

OR
Prove that the order of an element of a direct product of a finite number
of finite groups is the least multiple of the order of the components of

the element. 7

Express U(165) as an internal direct product of proper subgroups in two
different ways. 5

Prove that any two Sylow p-subgroups of a finite group G are
conjugate. 7

Prove that a group of order 175 is abelian. 5
OR

Suppose that G is a group of order 60 and G has a normal subgroup
N of order 2. Prove that G has a cyclic subgroup of order 30. 6

Prove that if G is a finite group and H is a proper normal subgroup of

largest order, then G/H is simple. 6

Prove that a finite extension of a finite extension is finite. 8

Find the splitting field for x® +x +1 over Z,. 4
OR
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12.

13.

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x) over F. Prove that all the zeros of f(x) in E have the
same multiplicity. 7

Find the degree and a basis of the splitting field of x° +x® +1 over Q.
5

Prove that the maximum degree of any irreducible factor of x® —x over

Zyis 3. 6
Prove that, for each positive divisor m of n, GF(p”) has a unique
subfield of order p™. Find the number of subfields of GF(625). 6
OR
Prove that an angle ¢ is constructible if and only if cosé is
constructible. 8
Prove that a 40° angle is not constructible. 4
Find the Galois group of Q(“\/ﬁ,i) over Q. 6
Prove that @, (x)=® (- x) for all odd positive n. 6
OR
Let N be a normal subgroup of a group G. If both N and G/N are
solvable, prove that G is solvable. 6
Prove that @, (x)e Z[x]. 6

(5% 12 =60 Marks)
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Time : 3 Hours Max. Marks : 75

PART - A

Answer any five questions. Each question carries 3 marks.

1.

Define Lebesgue outer measure and prove that it is countably subadditive and
translation invariant.

Let f =g a.e. where f is a continuous function. Show that ess sup f=ess sup
g =sup f.

1 oo n
Show that [sin x log xdx = Zi
0 a=1(2n)(2n)!

Show that the derivatives of a continuous function are measurable.

Prove that the limit of a pointwise convergent sequence of measurable functions
is measurable.

Show that if 0 <a < e and 0< p < e then logx™" e LP (0, a).

State and prove Jensen’s inequality.

Show that if f, —f in measure and « is any real number, then of, — of in
measure.

(5 x 3 =15 Marks)

P.T.O.



PART - B
Answer any questions choosing either (a) or (b). Each question carries 12 marks.

9. (A) (a) Prove thatthe interval (a, =) is measurable. 3

(b) Prove that the Lebesgue outer measure of an interval is its length. 9
OR

(B) (@) Let <E;> be a sequence of measurable sets. Prove that

m(U Ei)s > mE; . If the sets E; are pairwise disjoint, then prove that

(b) Give an example of a measurable set that is not a Borel set. 6

10. (A) Prove that if f is Riemann integrable and bounded over the finite interval

b b
[a,b], then f is integrable and R[f dx = [f dx. What can you say of the
a a

converse? Justify. 12

OR

X
(B) (a) Provethatif f e L(a, b) then F(x)= J'f (t) dt is a continuous function on

a

[a, b] and is of bounded variation on [a, b]. 6

(b) If fis a finite-valued monotone increasing function defined on the finite

b
interval [a, b], then prove that f’ is measurable and If’dx <f(b)-f(a).
a

6
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11.

12.

13.

(A)

(B)

(A)

(B)

(A)

(B)

Prove that if 4 is a o -finite measure on a ring R, then it has a unique
extension to the o -ring S(R). 12

OR
If 1 is a measure on a o-ring S, then prove that the class S of sets of the

form EAN for any sets E, N such that Ee S while N is contained in some
set in S of zero measure, is a o-ring and the set function uz defined by

ZZ(EAN) = u(E) is a complete measure on S 12

(a) Prove that every function that is convex on an open interval is
continuous. 6

(b) State and prove Minkowski’s inequality. Also discuss when equality
occurs. 6

OR
Prove that for p >1, LP (u) is a complete metric space. 12

Prove that the signed measure on [[X, S]] has a Jordan decomposition.

Show also that this decomposition is unique and minimal. 12
OR
State and prove the Radon-Nikodym theorem. 12

(5% 12 = 60 Marks)
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Mathematics
MM 223 - TOPOLOGY I
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Time : 3 Hours Max. Marks : 75

PART - A

Answer any five questions. Each question carries 3 marks.

1.

Prove or disprove : countable product of second countable spaces is second
countable.

Prove that the projection maps p; : X — X;, where X =X;xX,X....xX,, are
continuous.

Show that R/ ~ is topologically equivalent to a circle.

Define T, -spaces for i = 1, 2 and give an example for a T,-space which is not T, .

Prove or disprove : product of any family of regular spaces need not be regular.

If f:X —Y then show that f is continuous at x, e X if and only if whenever
F — X in Xthen f (F)—>1f(xy)in Y.

Prove or disprove : every contractible space is simply connected.

Is the set of end points E = {a, b} a retract of a closed interval [a, b] where a<b ?
Justify your answer.

(5 x 3 =15 Marks)

P.T.O.



PART - B

Answer all questions. Each question carries 12 marks.

9.

10.

11.

A.

(a) Prove that product of an arbitrary Collection of connected spaces is
connected. 6

(b) Define (i) Weak topology (ii) Projection map (iii) Quotient space. 6
OR

(a) Prove that product of a finite number of compact spaces is compact. 6

(b) Let X and Y be spaces and f: X —Y be a continuous function from

X onto Y. Prove that the natural correspondence h: X/~—Y defined
byh([x])=f(x), xe X is a homeomorphism if and only if Y has the

quotient topology determined by f. 6

State and prove Tietze extension theorem. 12
OR

(a) Show that every metric space is normal. 6

(b) Prove that Sorgenfrey plane is regular but not normal. 6

State and prove Tychonoff theorem; prove at least one significant result
used in it. 12

OR

(a) Show that .# has x as a cluster point if and only if there is a filter ¢
finer than % which converges to x. 6

(b) If X is a first countable space and E c X, then show that x e E if and
only if there is a sequence (X,,) contained in E which converges to x. 6
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12.

13.

(a)

(b)

(a)

(b)

(@)

Let X be a path connected space and xy,X; points of X. Show that the

fundamental groups 7,(X, X,) and z,(X, x4) are isomorphic. 6
State and prove covering homotopy property. 6
OR

Show that the homotopy class [c], where c is the constant loop whose
only value is X, is the identity element for z,(X, X;). 6

Prove that the fundamental group r, (S" is isomorphic to the additive

group Z of integers. 6

If D is a deformation retract of a space X and X, is a point of D, show

that z,(X, x,) and 7(D,X,) are isomorphic. 6

(b) State and prove Brouwer fixed point theorem. 6
OR

Show that the n-sphere S" is simply connected for n>2. 12

(5% 12 =60 Marks)

3 P - 5245



(Pages : 3) P — 5246

Second Semester M.Sc. Degree Examination, September 2022
Mathematics

MM 224 — PARTIAL DIFFERENTIAL EQUATIONS AND
INTEGRAL EQUATIONS

(2020 Admission Onwards)

Time : 3 Hours Max. Marks : 75
PART — A

Answer any five questions. Each question carries 3 marks.

1.  Solve the PDE xa—u+ya—u:0.
0X oy
2
2. Solve by Lagrange’s method (u]a_z 9z =y2.
X ) oX oy

3. Classify the given PDE x°u,, —2xyu,, +y?u,, +Xu, +yu, =0.
4.  Show that the derivative u, of a solution u(x,y) to wave equation will also be a
solution.
1

5. Find the eigen values of the Integral Equation y(s)=A[e*"'y(t)dt .
0

P.T.O.



6.

7.
8.

1

Find the resolvant kernel for the Integral Equation y(s)=f(s)+ A[e® 'y (t)dt.

0

Show that extremals of the arc length functionals are straight lines.

State Hamilton’s principle.

(5 x 3 =15 Marks)
PART - B

Answer all questions. Each question carries 12 marks.

9.

10.

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

Solve the partial differential equation u, +u, =2 with the initial

condition u(x,0) = x2. 9

State the generalized Transversality condition. 3
OR

Find the equation of the surface satisfying the PDE

4yu3—u+g—u+2y =0 and passing through y? +u? =1, x+u=2. 6
X oy

2
Solve the PDE ux+3y3uy:2 subject to the initial condition

u(x,1)=1+x. 6

Write the d-Alembert's solution to the wave equation

U, =c2u,,, u(x,0)=0, u,(x,0)=cos x. 6

Reduce u,, = xzuyy to canonical form. 6
OR

Solve the initial value problem u, +2u, =0, u(0,y)=4e™* using the

method of separation of variables. 6

Sketch the regions in which the PDE yu,, —2u,, +xu,, =0 is elliptic,
parabolic and hyperbolic. 6
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11.

12.

13.

(A)

(B)

(A)

(B)

(A)

(B)

Establish the law of conservation of energy of the wave equation that

represents the motion of an infinite string. 12
OR
e . ou , d%u . - .
Solve the diffusion equation s = k8_2 with the initial condition
X
u(x,0)=e ™ using the method of Green’s function. 12
Find the resolvent kernel of the Integral Equation
1
y(s)=f(s)+A[(s +t)g(t)dt. 12
0
OR
1 1
Solve the Integral Equation y(s)=s + [ {st + (st)z}y(t)dt : 12
0

Extremize the functional :T ly(x)] =

O —N |y

(y'? - y?Jaxy(0) =0, y(gj =1. 12

OR

X1
Find the minimal surface of the functional Jo[y (x)]=2r jy«/1+(y’) dx. 12
X2

(5 x 12 = 60 Marks)
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Mathematics
MM 221 — ABSTRACT ALGEBRA
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Max. Marks : 75

Instructions : Answer five questions choosing Part — A or Part — B from each

1. (A) (a)

(b)

(B) (a)
(b)

2. (A) (a)
(b)

(B) (a)

(b)

question and all questions carry equal marks.
Let G and H be finite cyclic groups. Show that G @ H is cyclic if and
only if (G| and |H| are relatively prime.
State and prove Cauchy’s theorem for abelian groups. 5+10
OR
Find five subgroups of Ss of order 24.
Show that every group of order p2, where p is a prime, is isomorphic
toZ,orz,®z,. 5+10
State and prove Sylow’s first theorem.

Write down the Greedy algorithm for constructing an abelian group of
order p". 10+5

OR

Let G be an abelian group of prime power order and let a be an
element of maximum order in G. Show that G can be written in the form

a)xK,whereK =yxe G/x™ =ej.
(a) ! J

Show that the only group of order 255 is Zse. 10+5

P.T.O.



(A)

(B)

(A)

(B)

(A)

(B)

(@)
(b)

(@)

(b)

(c)

(b)

(a)

(b)

(@)

(b)

(b)

State and prove the theorem for existence of factor rings.
State and prove Gauss’s lemma. 10+5
OR

Let R be a commutative ring with unity and A be an ideal of R. Show
that R/A is a field if and only if A is maximal.

Let R be a ring with unity 1. Show that the mapping ¢ :Z — R given by
n — n.1is a ring homomorphism.

Let f(x)e Z[x]. Prove that if f(x) is reducible over Q, then it is reducible
over Z. 5+5+5

Prove that every principal ideal domain is a unique factorization
domain.

Show that every finite field is perfect. 10+5
OR

State and prove Kronecker’s theorem.

Show that every euclidean domain is a principal ideal domain. 10+ 5

Let K be a finite extension field of the field E and let E be a finite
extension field of the field F. Show that K is a finite extension field of F
and [K: F]=[K: E][E:F].

Show that a factor group of a solvable group is solvable. 10+5
OR

Let F be a field of characteristic 0 and let ae F . If E is splitting field of
x" —a over F, show that the Galois group Gal(E/F) is solvable.

If K is an algebraic extension of E and E is an algebraic extension of F,
show that K is an algebraic extension of F. 10+5

(5 x 15 =75 Marks)
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Mathematics
MM 222 : REAL ANALYSIS |
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Instruction :  Answer either Part A or Part B of each question. All questions
carry equal marks.

UNIT |

I. (A) (a) Define Lebesgue outer measure and prove that it is countably sub
-additive and translation invariant.

(b) Prove that every countable set has outer measure zero.
(c) Prove that the Lebesgue outer measure of an interval is its length.
3+2+10

(B) (a) Let <E,> be an infinite decreasing sequence of measurable sets. Let
mE, be finite. Prove that m(ﬂ::1 Ei)zlimn% mE

(b) Prove that the collection of measurable sets is a ¢ — algebra.

(c) Prove that there exists a non-measurable set.

5+5+5

P.T.O.



(A)

(B)

(B)

(@)

(b)

(c)

(b)

UNIT I
Show that [ wd_):‘= -.

State and prove Fatou’s lemma. Hence state and prove Lebesgue’s
Monotone convergence theorem.

Show by an example that strict inequality can occur in Fatou’s lemma.
3+10+2

If f(x)=|¥, find the first four derivatives at x=0.

Let f be a bounded function defined on the finite interval [a,b]. Prove
that f is Riemann integrable over if [a,b] iff f is continuous a.e.

Let [a,b] be a finite interval and let f e L(a,b) with indefinite integral F.
Prove that F' = f a.e. in [a,b].

4+6+5
UNIT Il

Show that if u is a non-negative set function on a ring, is count-ably
additive and is finite on some set, then | is a measure.

Prove that if u is a a o- finite measure on a ring R, then it has a unique
extension to the o-ring S (R)

7+8
Prove that the class S" of the 4" measurable sets of H(R) is a c— ring.

If uis @ measure on a c—ring S then prove that the class § of sets of

the form EAN for any sets E, N such that E € S while N is contained in
some set in S of zero measure, is a 6— ring and the set function z
defined by ux(EAN)= u(E) is a complete measure on §.

7+8
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V.

(A)

(B)

(A)

(B)

UNIT IV

(a) Prove thatif f,ge L°(«) and a, b are constants then af +bge L°(u).
(b) State and prove Holder’s inequality. Also discuss when equality occurs
in case when f and g are non-negative measurable functions.
5+10
(a) State and prove Jensen’s inequality.
(b) Prove that for p>1,L°(u) is a complete metric space.
6+9
UNIT V
(a) Prove that if f is a sequence of measurable functions which is
fundamental in measure, then there exists a measurable function f
such that f, — f in measure.
(b) State and prove the Jordan decomposition theorem.
6+9
State and prove the Radon- Nikodym theorem. 15

(5% 15 =75 Marks)
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Second Semester M.Sc. Degree Examination, September 2022

Instruction :

(A) (a)

(b)

(c)

(B) (a)

(b)

(c)

Mathematics
MM 223 : TOPOLOGY I
(2017-2019 Admission)

Max. Marks : 75

Answer either Part A or Part B of the equation
All questions carry equal marks.

UNIT |

Prove that the projection maps p,: X-X, from a product space
X =X;xX,x...x X, to the coordinate spaces are continuous.

Prove that the product of a finite number of compact spaces is
compact.

Describe the weak topology for R generated by the family of constant
functions f : R - R. 5+7+3

Let X be a space, Y be a set and let f: X Y be a function from
X onto Y. Define the quotient topology determined by f.

Let X and Y be spaces and let f: X —Y be a continuous function from

X onto Y. Prove that the function h:X/f -Y defined by
h(x])=f(x), xe X is a homeomorphism if and only if Y has the quotient

topology determined by f.

Show that every manifold is locally compact. 5+5+5

P.T.O.



V.

(B)

(A)

(B)

(A)

(B)

UNIT II

(a) Define a Urysohn space. Prove that each Urysohn space is a
Hausdorff space.
(b) Prove that the product of any family of regular spaces is regular.
(c) If X is a separable normal space and E a subset of X with
card > card R, then prove that E has a limit point in X. 5+5+5
State and prove Urysohn’s lemma. 15
UNIT I
(a) Let A be a subset of a topological space X. Prove that for xe X,xe A if
and only if there exists a filter on X which contains A and converges
to x.
(b) Prove that X is a T, -space if and only if each filter converges to at most
one point.
(c) Let u be an ultrafilter on X and Ac X be such that UNA=¢ for all
ueu. Prove that Acu. 5+5+5
State and prove Tychonoff theorem. 15
UNIT IV
(a) Prove that an interval [a, b] on the real line is contractible to a.

(b)

(@)
(b)

With usual notations prove that if X is a space and x, a point of X, then
I1,(X,x,) is a group under the operation. 7+8

State and prove the covering path property.

Prove that the fundamental group H1(S1) is isomorphic to the additive

group Z of integers. 7+8
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V.

(A) (a)
(b)

(B) (a)

(b)

UNIT V
Determine the fundamental group of a closed cylinder.

Prove that if D is a deformation retract of a space X and x, is a point of
D, then [.(X,x,) and [, x,) are isomorphic. 7+8

Let X be a space. Prove that every deformation retract of X is also a
retract of X.

Proving all the necessary results, state and prove the Brouwer fixed
point theorem. 7+8

(5 x 15 =75 Marks)
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Time : 3 Hours

. (A) (a)

(b)
(c)

(B) (a)
(b)

(2017 — 2019 Admission)

Max. Marks : 50

Answer either Part A and Part B only of each question.

Each question carries 10 marks.

Write a python program to convert Fahrenheit to Celsius
(f =9/5¢c +32). 4

Write a program to modify the list [1, 2, 3, 4] to make it [1, 2, 3, 8]. 3

What is the difference between Python’s Module, Package and
Library? 3

OR
What are Logical Operators in Python? 4

Write a program to display even numbers within a range. Also display
their sum and average. 3

Write a program to display the factorial of numbers from 1 to 20. 3

P.T.O.



(A)

(B)

(A)

(B)

(@)

(b)

(b)
(c)

(b)

(c)

(@)
(b)
(c)

Use matplotlib.pyplot.plot to produce a plot of the functions
f(x)=esin(zx) and g(x)=xe™* over the interval [0, 10]. Include
labels for the x-and y-axes and a legend explaining which line is which
plot. 4

What is tuple? What is the difference between list and tuple? 3

Write a Python program to plot y =2x” +5x+1(for x from 0 to 1, 10
points), using pylab, with axes and title. Use red colored circles to mark

the points. 3
OR

What are the built-in functions that are used in Tuple? 4

Write Python code to plot y = x*, with both the axes labeled. 3

Write a Python program to draw a bar chart. 3
1

Evaluate the integral jex sin(x) dx using symbolic python. 4
0

Calculate the limit lim__ " +1 using sympy. 3

Solve the equation x* +1=0 using SymPy’s solve () function. 3
OR

How is symbolic Integration done in Python using SymPy? 4

Differentiate the functions sin(t), cos(t?) using Sympy. 3

Explain the following functions in Python :

(i) plot( ), (ii) range (), (iii) arange, (iv) append () 3
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V.

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

Find a real root of the equation f(x)=x>-2x-5=0 by method of
False position. 5

Find a root of f(x)=xe*-1=0, using Bisection method, correct to

three decimal places. 5
OR

Explain Newton Raphson Method for solving equation of the form

f(x)=0. 5

Solve x* —x —1=0 by Newton Raphson Method. 5

Derive Newton'’s Cotes formula. Hence deduce Simpson’s 3/8 rule. 7

]
Evaluate j1+ x? by using Simpson’s 3/8 rule. 3
0
OR
Explain Runge-Kutta method for solving an initial value problem : 4

Yy =f(X, ¥) y(X,)=Y,

Using the Runge-Kutta method of order 4, find y(0.2) if
dy/dx =(y —x)/(y +x), y(0)=1 and h=0.2. 6

(5 x 10 = 50 Marks)
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