Name :

Second Semester M.Sc. Degree Examination, September 2022

Mathematics

MM 221 – ABSTRACT ALGEBRA

(2020 Admission Onwards)

Time : 3 Hours

Max. Marks: 75

P - 5243

SECTION – A

Answer **any five** questions. **Each** question carries **3** marks.

- 1. Let G = U(16), $H = \{1, 15\}$ and $K = \{1, 9\}$. Are H and K isomorphic? Are G/H and G/K isomorphic?
- 2. Prove that a group of order 105 contains a subgroup of order 35.
- 3. Express $x^8 x$ as a product of irreducible polynomials over \mathbb{Z}_2 .
- 4. Construct a field of order 9.
- 5. Find $\Phi_{12}(x)$.
- 6. If a and b are constructible numbers, give a geometric proof that a + b is constructible.
- 7. Show, by an example, that if the order of a finite abelian group is divisible by 4, the group need not have a cyclic subgroup of order 4.
- 8. Find the minimal polynomial for $1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q} .

(5 × 3 = 15 Marks)

P.T.O.

SECTION – B

Answer **all** questions. **Each** question carries **12** marks.

- 9. (A) (a) Let G be an abelian group of prime-power order and let a be an element of maximal order in G. Prove that G is the internal direct product of ⟨a⟩×K for some subgroup K in G.
 9
 - (b) Show, by example, that in a factor group G/H it can happen that aH = bH but $|a| \neq |b|$. 3

OR

- (B) (a) Prove that the order of an element of a direct product of a finite number of finite groups is the least multiple of the order of the components of the element.
 - (b) Express *U*(165) as an internal direct product of proper subgroups in two different ways. **5**
- 10. (A) (a) Prove that any two Sylow *p*-subgroups of a finite group *G* are conjugate. **7**
 - (b) Prove that a group of order 175 is abelian.

OR

- (B) (a) Suppose that *G* is a group of order 60 and *G* has a normal subgroup *N* of order 2. Prove that *G* has a cyclic subgroup of order 30. **6**
 - (b) Prove that if G is a finite group and H is a proper normal subgroup of largest order, then G/H is simple. **6**
- 11. (A) (a) Prove that a finite extension of a finite extension is finite. 8
 - (b) Find the splitting field for $x^3 + x + 1$ over \mathbb{Z}_2 . 4

OR

P – 5243

- (B) (a) Let f(x) be an irreducible polynomial over a field F and let E be a splitting field of f(x) over F. Prove that all the zeros of f(x) in E have the same multiplicity.
 - (b) Find the degree and a basis of the splitting field of $x^6 + x^3 + 1$ over \mathbb{Q} .
- 12. (A) (a) Prove that the maximum degree of any irreducible factor of $x^8 x$ over \mathbb{Z}_2 is 3.
 - (b) Prove that, for each positive divisor *m* of *n*, $GF(p^n)$ has a unique subfield of order p^m . Find the number of subfields of GF(625). **6**

	(B)	(a)	Prove that an angle θ is constructible if and only if $\cos \theta$ constructible.	is 8
		(b)	Prove that a 40° angle is not constructible.	4
13.	(A)	(a)	Find the Galois group of $\mathbb{Q}(\sqrt[4]{2},i)$ over \mathbb{Q} .	6
		(b)	Prove that $\Phi_{2n}(x) = \Phi_n(-x)$ for all odd positive <i>n</i> .	6
			OR	

- (B) (a) Let *N* be a normal subgroup of a group *G*. If both *N* and *G/N* are solvable, prove that *G* is solvable. **6**
 - (b) Prove that $\Phi_n(x) \in \mathbb{Z}[x]$.

6

5

(5 × 12 = 60 Marks)

P – 5243

Name :

Second Semester M.Sc. Degree Examination, September 2022

Mathematics

MM 222 — REAL ANALYSIS II

(2020 Admission Onwards)

Time : 3 Hours

Max. Marks: 75

P – 5244

PART – A

Answer **any five** questions. Each question carries **3** marks.

- 1. Define Lebesgue outer measure and prove that it is countably subadditive and translation invariant.
- 2. Let f = g a.e. where f is a continuous function. Show that ess sup f = ess sup g = sup f.
- 3. Show that $\int_{0}^{1} \sin x \log x dx = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2n)(2n)!}$.
- 4. Show that the derivatives of a continuous function are measurable.
- 5. Prove that the limit of a pointwise convergent sequence of measurable functions is measurable.
- 6. Show that if $0 < a < \infty$ and $0 then <math>\log x^{-1} \in L^{p}(0, a)$.
- 7. State and prove Jensen's inequality.
- 8. Show that if $f_n \to f$ in measure and α is any real number, then $\alpha f_n \to \alpha f$ in measure.

(5 × 3 = 15 Marks)

P.T.O.

PART – B

Answer **any** questions choosing either (a) or (b). Each question carries **12** marks.

- 9. (A) (a) Prove that the interval (a, ∞) is measurable.
 - (b) Prove that the Lebesgue outer measure of an interval is its length. 9

OR

- (B) (a) Let $\langle E_i \rangle$ be a sequence of measurable sets. Prove that $m(\bigcup E_i) \leq \sum mE_i$. If the sets E_i are pairwise disjoint, then prove that $m(\bigcup E_i) = \sum mE_i$.
 - (b) Give an example of a measurable set that is not a Borel set. **6**
- 10. (A) Prove that if *f* is Riemann integrable and bounded over the finite interval [a, b], then *f* is integrable and $R \int_{a}^{b} f \, dx = \int_{a}^{b} f \, dx$. What can you say of the converse? Justify.

OR

- (B) (a) Prove that if $f \in L(a, b)$ then $F(x) = \int_{a}^{x} f(t) dt$ is a continuous function on [a, b] and is of bounded variation on [a, b].
 - (b) If *f* is a finite-valued monotone increasing function defined on the finite interval [*a*, *b*], then prove that *f*' is measurable and $\int_{a}^{b} f' dx \le f(b) f(a)$. **6**

P - 5244

11. (A) Prove that if μ is a σ -finite measure on a ring \mathbb{R} , then it has a unique extension to the σ -ring $S(\mathbb{R})$.

OR

- (B) If μ is a measure on a σ -ring S, then prove that the class \overline{S} of sets of the form $E\Delta N$ for any sets E, N such that $E \in S$ while N is contained in some set in S of zero measure, is a σ -ring and the set function $\overline{\mu}$ defined by $\overline{\mu}(E\Delta N) = \mu(E)$ is a complete measure on \overline{S} **12**
- 12. (A) (a) Prove that every function that is convex on an open interval is continuous. **6**
 - (b) State and prove Minkowski's inequality. Also discuss when equality occurs. **6**

OR

- (B) Prove that for $p \ge 1$, $L^{p}(\mu)$ is a complete metric space. 12
- 13. (A) Prove that the signed measure on [[X, S]] has a Jordan decomposition. Show also that this decomposition is unique and minimal. **12**

OR

(B) State and prove the Radon-Nikodym theorem.

 $(5 \times 12 = 60 \text{ Marks})$

Name :

Second Semester M.Sc. Degree Examination, September 2022 Mathematics MM 223 – TOPOLOGY II (2020 Admission onwards)

Time : 3 Hours

Max. Marks : 75

PART – A

Answer **any five** questions. **Each** question carries **3** marks.

- 1. Prove or disprove : countable product of second countable spaces is second countable.
- 2. Prove that the projection maps $p_i : X \to X_i$, where $X = X_1 \times X_2 \times ... \times X_n$ are continuous.
- 3. Show that R/\sim is topologically equivalent to a circle.
- 4. Define T_i -spaces for i = 1, 2 and give an example for a T_1 -space which is not T_2 .
- 5. Prove or disprove : product of any family of regular spaces need not be regular.
- 6. If $f: X \to Y$ then show that f is continuous at $x_0 \in X$ if and only if whenever $\mathscr{F} \to x_0$ in X then $f(\mathscr{F}) \to f(x_0)$ in Y.
- 7. Prove or disprove : every contractible space is simply connected.
- 8. Is the set of end points $E = \{a, b\}$ a retract of a closed interval [a, b] where a < b? Justify your answer.

(5 × 3 = 15 Marks)

P.T.O.

PART – B

Answer **all** questions. Each question carries **12** marks.

- 9. A. (a) Prove that product of an arbitrary Collection of connected spaces is connected. **6**
 - (b) Define (i) Weak topology (ii) Projection map (iii) Quotient space. 6

OR

- B. (a) Prove that product of a finite number of compact spaces is compact. 6
 - (b) Let X and Y be spaces and f: X → Y be a continuous function from X onto Y. Prove that the natural correspondence h: X / ~→ Y defined by h([x]) = f(x), x ∈ X is a homeomorphism if and only if Y has the quotient topology determined by f.
- 10. A. State and prove Tietze extension theorem.

OR

- B. (a) Show that every metric space is normal. 6
 - (b) Prove that Sorgenfrey plane is regular but not normal. 6
- 11. A. State and prove Tychonoff theorem; prove at least one significant result used in it. **12**

OR

- B. (a) Show that \mathscr{F} has x as a cluster point if and only if there is a filter \mathscr{G} finer than \mathscr{F} which converges to x. **6**
 - (b) If X is a first countable space and $E \subset X$, then show that $x \in \overline{E}$ if and only if there is a sequence (x_n) contained in *E* which converges to *x*. **6**

- 12. A. (a) Let X be a path connected space and x_0, x_1 points of X. Show that the fundamental groups $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are isomorphic. **6**
 - (b) State and prove covering homotopy property.

- B. (a) Show that the homotopy class [c], where *c* is the constant loop whose only value is x_0 , is the identity element for $\pi_1(X, x_0)$. **6**
 - (b) Prove that the fundamental group $\pi_1(S^1)$ is isomorphic to the additive group \mathbb{Z} of integers. **6**
- 13. A. (a) If *D* is a deformation retract of a space *X* and x_0 is a point of *D*, show that $\pi_1(X, x_0)$ and $\pi_1(D, x_0)$ are isomorphic. **6**
 - (b) State and prove Brouwer fixed point theorem.

OR

B. Show that the n-sphere S^n is simply connected for $n \ge 2$. **12**

(5 × 12 = 60 Marks)

6

Name :

Second Semester M.Sc. Degree Examination, September 2022

Mathematics

MM 224 — PARTIAL DIFFERENTIAL EQUATIONS AND INTEGRAL EQUATIONS

(2020 Admission Onwards)

Time : 3 Hours

Max. Marks: 75

PART – A

Answer any **five** questions. Each question carries **3** marks.

- 1. Solve the PDE $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.
- 2. Solve by Lagrange's method $\left(\frac{y^2z}{x}\right)\frac{\partial z}{\partial x} + xz\frac{\partial z}{\partial y} = y^2$.
- 3. Classify the given PDE $x^2u_{xx} 2xyu_{xy} + y^2u_{yy} + xu_x + yu_y = 0$.
- 4. Show that the derivative u_x of a solution u(x, y) to wave equation will also be a solution.
- 5. Find the eigen values of the Integral Equation $y(s) = \lambda \int_{0}^{1} e^{s+t} y(t) dt$.

P.T.O.

- 6. Find the resolvant kernel for the Integral Equation $y(s) = f(s) + \lambda \int_{0}^{1} e^{s-t} y(t) dt$.
- 7. Show that extremals of the arc length functionals are straight lines.
- 8. State Hamilton's principle.

$$(5 \times 3 = 15 \text{ Marks})$$

Answer **all** questions. Each question carries **12** marks.

- 9. (A) (a) Solve the partial differential equation $u_x + u_y = 2$ with the initial condition $u(x,0) = x^2$. 9
 - (b) State the generalized Transversality condition. **3**

OR

- (B) (a) Find the equation of the surface satisfying the PDE $4yu\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 2y = 0$ and passing through $y^2 + u^2 = 1$, x + u = 2. 6
 - (b) Solve the PDE $u_x + 3y^{\frac{2}{3}}u_y = 2$ subject to the initial condition u(x, 1) = 1 + x.
- 10. (A) (a) Write the d-Alembert's solution to the wave equation $u_{tt} = c^2 u_{xx}, u(x,0) = 0, u_t(x,0) = \cos x$.

(b) Reduce
$$u_{xx} = x^2 u_{yy}$$
 to canonical form.

OR

- (B) (a) Solve the initial value problem $u_x + 2u_y = 0$, $u(0, y) = 4e^{-2x}$ using the method of separation of variables. 6
 - (b) Sketch the regions in which the PDE $yu_{xx} 2u_{xy} + xu_{yy} = 0$ is elliptic, parabolic and hyperbolic. **6**

P – 5246

11. (A) Establish the law of conservation of energy of the wave equation that represents the motion of an infinite string. **12**

OR

- (B) Solve the diffusion equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ with the initial condition $u(x,0) = e^{-x}$ using the method of Green's function. 12
- 12. (A) Find the resolvent kernel of the Integral Equation $y(s) = f(s) + \lambda \int_{0}^{1} (s+t)g(t)dt$. 12

OR

- (B) Solve the Integral Equation $y(s) = s + \lambda \int_{0}^{1} \left[st + (st)^{\frac{1}{2}} \right] y(t) dt$. **12**
- 13. (A) Extremize the functional $\mathcal{J}[y(x)] = \int_{0}^{\frac{\pi}{2}} [(y')^2 y^2] dx; y(0) = 0, y(\frac{\pi}{2}) = 1.$ 12

OR

(B) Find the minimal surface of the functional $\mathcal{J}[y(x)] = 2\pi \int_{x_2}^{x_1} y \sqrt{1 + (y')} dx$. 12 (5 × 12 = 60 Marks)

Name :

Second Semester M.Sc. Degree Examination, September 2022

Mathematics

MM 221 — ABSTRACT ALGEBRA

(2017 – 2019 Admission)

Time : 3 Hours

Max. Marks: 75

Instructions : Answer **five** questions choosing Part – A or Part – B from each question and all questions carry equal marks.

- 1. (A) (a) Let G and H be finite cyclic groups. Show that $G \oplus H$ is cyclic if and only if |G| and |H| are relatively prime.
 - (b) State and prove Cauchy's theorem for abelian groups. **5 + 10**

OR

- (B) (a) Find five subgroups of S_5 of order 24.
 - (b) Show that every group of order p^2 , where p is a prime, is isomorphic to Z_p or $Z_p \oplus Z_p$. **5 + 10**
- 2. (A) (a) State and prove Sylow's first theorem.
 - (b) Write down the Greedy algorithm for constructing an abelian group of order p^n . **10 + 5**

OR

- (B) (a) Let *G* be an abelian group of prime power order and let a be an element of maximum order in *G*. Show that *G* can be written in the form $\langle a \rangle \times K$, where $K = \{x \in G \mid x^m = e\}$.
 - (b) Show that the only group of order 255 is Z_{255} . **10 + 5**

P.T.O.

- 3. (A) (a) State and prove the theorem for existence of factor rings.
 - (b) State and prove Gauss's lemma. **10 + 5**

- (B) (a) Let R be a commutative ring with unity and A be an ideal of R. Show that R/A is a field if and only if A is maximal.
 - (b) Let *R* be a ring with unity 1. Show that the mapping $\phi: Z \to R$ given by $n \to n.1$ is a ring homomorphism.
 - (c) Let $f(x) \in Z[x]$. Prove that if f(x) is reducible over Q, then it is reducible over Z. 5 + 5 + 5
- 4. (A) (a) Prove that every principal ideal domain is a unique factorization domain.
 - (b) Show that every finite field is perfect. **10 + 5**

OR

- (B) (a) State and prove Kronecker's theorem.
 - (b) Show that every euclidean domain is a principal ideal domain. **10 + 5**
- 5. (A) (a) Let *K* be a finite extension field of the field *E* and let *E* be a finite extension field of the field *F*. Show that *K* is a finite extension field of F and [K: F] = [K: E] [E: F].
 - (b) Show that a factor group of a solvable group is solvable. **10 + 5**

OR

- (B) (a) Let *F* be a field of characteristic 0 and let $a \in F$. If *E* is splitting field of $x^n a$ over *F*, show that the Galois group Gal(*E*/*F*) is solvable.
 - (b) If *K* is an algebraic extension of *E* and *E* is an algebraic extension of *F*, show that *K* is an algebraic extension of *F*. 10 + 5

(5 × 15 = 75 Marks)

P – 5247

Name :

Second Semester M.Sc. Degree Examination, September 2022

Mathematics

MM 222 : REAL ANALYSIS II

(2017-2019 Admission)

Time : 3 Hours

Max. Marks: 75

Instruction : Answer either Part A or Part B of each question. **All** questions carry equal marks.

UNIT I

- I. (A) (a) Define Lebesgue outer measure and prove that it is countably sub -additive and translation invariant.
 - (b) Prove that every countable set has outer measure zero.
 - (c) Prove that the Lebesgue outer measure of an interval is its length.

3 + 2 + 10

- (B) (a) Let $\langle E_n \rangle$ be an infinite decreasing sequence of measurable sets. Let mE_1 be finite. Prove that $m(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} mE_n$.
 - (b) Prove that the collection of measurable sets is a σ algebra.
 - (c) Prove that there exists a non-measurable set.

5 + 5 + 5

P.T.O.

UNIT II

- II. (A) (a) Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$.
 - (b) State and prove Fatou's lemma. Hence state and prove Lebesgue's Monotone convergence theorem.
 - (c) Show by an example that strict inequality can occur in Fatou's lemma.

3 + 10 + 2

- (B) (a) If f(x) = |x|, find the first four derivatives at x = 0.
 - (b) Let f be a bounded function defined on the finite interval [a,b]. Prove that f is Riemann integrable over if [a,b] iff f is continuous a.e.
 - (c) Let [a,b] be a finite interval and let $f \in L(a,b)$ with indefinite integral *F*. Prove that F' = f a.e. in [a,b].

4 + 6 + 5

UNIT III

- III. (A) (a) Show that if μ is a non-negative set function on a ring, is count-ably additive and is finite on some set, then μ is a measure.
 - (b) Prove that if μ is a a σ finite measure on a ring \mathbb{R} , then it has a unique extension to the σ ring $\mathbb{S}(\mathbb{R})$

7 + 8

- (B) (a) Prove that the class S^* of the μ^* measurable sets of H(R) is a σ ring.
 - (b) If μ is a measure on a σ ring \mathbb{S} , then prove that the class $\overline{\mathbb{S}}$ of sets of the form $E\Delta N$ for any sets E, *N* such that $E \in \mathbb{S}$ while *N* is contained in some set in \mathbb{S} of zero measure, is a σ ring and the set function $\overline{\mu}$ defined by $\overline{\mu}(E\Delta N) = \mu(E)$ is a complete measure on $\overline{\mathbb{S}}$.

7 + 8

P – 5248

UNIT IV

- IV. (A) (a) Prove that if $f, g \in L^{p}(\mu)$ and a, b are constants then $af + bg \in L^{p}(\mu)$.
 - (b) State and prove Holder's inequality. Also discuss when equality occurs in case when *f* and g are non-negative measurable functions.

5 + 10

- (B) (a) State and prove Jensen's inequality.
 - (b) Prove that for $p \ge 1, L^p(\mu)$ is a complete metric space.

6 + 9

UNIT V

- V. (A) (a) Prove that if f_n is a sequence of measurable functions which is fundamental in measure, then there exists a measurable function f such that $f_n \rightarrow f$ in measure.
 - (b) State and prove the Jordan decomposition theorem.

6 + 9

15

(B) State and prove the Radon- Nikodym theorem.

(5 × 15 = 75 Marks)

Name :

Second Semester M.Sc. Degree Examination, September 2022 Mathematics MM 223 : TOPOLOGY II (2017-2019 Admission)

Time : 3 Hours

Max. Marks: 75

Instruction : Answer either Part A or Part B of the equation All questions carry equal marks.

UNIT I

- I. (A) (a) Prove that the projection maps $p_i : X X_i$ from a product space $X = X_1 \times X_2 \times ... \times X_n$ to the coordinate spaces are continuous.
 - (b) Prove that the product of a finite number of compact spaces is compact.
 - (c) Describe the weak topology for \mathbb{R} generated by the family of constant functions $f: \mathbb{R} \to \mathbb{R}$. 5 + 7 + 3
 - (B) (a) Let X be a space, Y be a set and let $f: X \to Y$ be a function from X onto Y. Define the quotient topology determined by *f*.
 - (b) Let X and Y be spaces and let $f: X \to Y$ be a continuous function from X onto Y. Prove that the function $h: X/\tilde{f} \to Y$ defined by $h([x]) = f(x), x \in X$ is a homeomorphism if and only if Y has the quotient topology determined by *f*.
 - (c) Show that every manifold is locally compact. 5+5+5

P.T.O.

UNIT II

- II. (A) (a) Define a Urysohn space. Prove that each Urysohn space is a Hausdorff space.
 - (b) Prove that the product of any family of regular spaces is regular.
 - (c) If X is a separable normal space and E a subset of X with $card \ge card \mathbb{R}$, then prove that E has a limit point in X. **5+5+5**
 - (B) State and prove Urysohn's lemma.

UNIT III

- III. (A) (a) Let A be a subset of a topological space X. Prove that for $x \in X, x \in \overline{A}$ if and only if there exists a filter on X which contains A and converges to x.
 - (b) Prove that X is a T_2 -space if and only if each filter converges to at most one point.
 - (c) Let *u* be an ultrafilter on *X* and $A \subset X$ be such that $U \cap A \neq \phi$ for all $u \in u$. Prove that $A \in u$. **5 + 5 + 5**
 - (B) State and prove Tychonoff theorem.

UNIT IV

- IV. (A) (a) Prove that an interval [a, b] on the real line is contractible to a.
 - (b) With usual notations prove that if X is a space and x_0 a point of X, then $\prod_1(X, x_0)$ is a group under the operation. **7 + 8**
 - (B) (a) State and prove the covering path property.
 - (b) Prove that the fundamental group $\prod_{1}(S^{1})$ is isomorphic to the additive group \mathbb{Z} of integers. **7 + 8**

2

P – 5249

15

UNIT V

- V. (A) (a) Determine the fundamental group of a closed cylinder.
 - (b) Prove that if *D* is a deformation retract of a space *X* and x_0 is a point of *D*, then $\prod_1(X, x_0)$ and $\prod_1(D, x_0)$ are isomorphic. **7 + 8**
 - (B) (a) Let X be a space. Prove that every deformation retract of X is also a retract of X.
 - (b) Proving all the necessary results, state and prove the Brouwer fixed point theorem. **7 + 8**

(5 × 15 = 75 Marks)

Name :

Second Semester M.Sc. Degree Examination, September 2022 Mathematics

MM 224 : SCIENTIFIC PROGRAMMING WITH PYTHON

(2017 – 2019 Admission)

Time : 3 Hours

Max. Marks : 50

Answer either Part A and Part B only of each question.

Each question carries **10** marks.

- I. (A) (a) Write a python program to convert Fahrenheit to Celsius (f = 9/5 c + 32).
 - (b) Write a program to modify the list [1, 2, 3, 4] to make it [1, 2, 3, 8]. **3**
 - (c) What is the difference between Python's Module, Package and Library? **3**

OR

4	What are Logical Operators in Python?	(a)	(B)
display 3	Write a program to display even numbers within a range. Also their sum and average.	(b)	
3	Write a program to display the factorial of numbers from 1 to 20.	(c)	

P.T.O.

- II. (A) (a) Use matplotlib.pyplot.plot to produce a plot of the functions $f(x) = e^{-x/10} \sin(\pi x)$ and $g(x) = x e^{-x/3}$ over the interval [0, 10]. Include labels for the *x*-and *y*-axes and a legend explaining which line is which plot.
 - (b) What is tuple? What is the difference between list and tuple? **3**
 - (c) Write a Python program to plot $y = 2x^2 + 5x + 1$ (for x from 0 to 1, 10 points), using pylab, with axes and title. Use red colored circles to mark the points. **3**

(B)	(a)	What are the built-in functions that are used in Tuple?	2
	(b)	Write Python code to plot $y = x^2$, with both the axes labeled.	3
	(c)	Write a Python program to draw a bar chart.	3
		1	

III. (A) (a) Evaluate the integral
$$\int_{0}^{1} e^{x} \sin(x) dx$$
 using symbolic python. 4

(b) Calculate the limit
$$\lim_{x\to\infty} \frac{\sqrt{x^2+1}}{x}$$
 using sympy. 3

(c) Solve the equation
$$x^3 + 1 = 0$$
 using SymPy's solve () function. 3

OR

(B)	(a)	How is symbolic Integration done in Python using SymPy?	4
	(b)	Differentiate the functions $sin(t)$, $cos(t^2)$ using Sympy.	3
	(c)	Explain the following functions in Python :	
		(i) plot(), (ii) range (), (iii) arange, (iv) append ()	3

P – 5250

- IV. (A) (a) Find a real root of the equation $f(x) = x^3 2x 5 = 0$ by method of False position. 5
 - (b) Find a root of $f(x) = xe^x 1 = 0$, using Bisection method, correct to three decimal places. 5

- (B) (a) Explain Newton Raphson Method for solving equation of the form f(x) = 0. 5
 - (b) Solve $x^3 x 1 = 0$ by Newton Raphson Method. 5
- V. (A) (a) Derive Newton's Cotes formula. Hence deduce Simpson's 3/8 rule. 7

(b) Evaluate
$$\int_{0}^{1} 1 + x^2$$
 by using Simpson's 3/8 rule. 3

OR

(B) (a) Explain Runge-Kutta method for solving an initial value problem : 4

$$y' = f(x, y), y(x_0) = y_0$$

(b) Using the Runge-Kutta method of order 4, find y(0.2) if dy/dx = (y - x)/(y + x), y(0) = 1 and h = 0.2. 6

(5 × 10 = 50 Marks)