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We study phonon relaxation in chains of particles coupled through polynomial-type pair-interaction potentials
and obeying quantum dynamics. We present detailed calculations for the sixth-order potential and find that the
wave-vector-dependent relaxation rate follows a power-law behavior, �(q) ∼ qδ , with δ = 5/3, which is identical
to that of the fourth-order potential. We argue through diagrammatic analysis that this is a generic feature of
even-power potentials. Our earlier analysis has shown that δ = 3/2 when the leading-order term in the nonlinear
potential is odd, suggesting that there are two universality classes for the phonon relaxation rates dependent on
a simple property of the potential. This implies that the thermal conductivity κ which diverges as a function
of chain size N as κ ∝ Nα also has two universal behaviors, in that α = 1 − 1/δ as follows from a finite-size
argument. We support these arguments by numerical calculations of conductivity for chains obeying classical
dynamics for polynomial potentials of some even and odd powers.
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I. INTRODUCTION

In the larger context of understanding irreversibility of
transport behavior on a microscopic basis, the study of thermal
conduction in vibrational chains has received considerable
attention [1,2]. In the last couple of decades, a number of
numerical studies have established that the thermal conduc-
tivity shows a power-law divergence with the system size:
κ ∼ Nα . The values of the exponent α for a variety of
momentum-conserving systems, like vibrational chains with
polynomial-type pair interactions with cubic or quartic powers
[1,3], Toda lattice [4], particles with hard-core interactions [5],
etc., strongly suggest the existence of a few universality classes
for this behavior. The exponents seen cluster around two
values, α = 1/3 for vibrational chains with leading cubic
nonlinearity and fluids and α = 2/5 for chains with quartic
potential. For quartic potential Mai et al. [6] have claimed that
α = 1/3 as well.

The concept of universality has found support in the
analytical work as well. Narayan and Ramaswamy [7] made
a renormalization group study of the hydrodynamic equations
of heat transport to argue for a universal value of α = 1/3
for all momentum-conserving systems in one dimension.
The hydrodynamics arguments have been further refined by
Lee-Dadswell et al. [8], who have argued for two universality
classes depending on whether the specific heat ratio γ = cp/cv

is 1 (α = 1/2) or greater than 1 (α = 1/3). The classical
vibrational chains have also been studied analytically by two
methods: the mode-coupling method [9,10] and the kinetic
theory method [11,12]. The mode-coupling treatment yields
α = 1/3 for cubic nonlinearity, and α = 1/2 for the quartic
nonlinearity in agreement with hydrodynamic arguments. The
kinetic theory method has been applied for only the quartic
potential and it yields α = 2/5. A settlement of this issue is
also hindered by the inherent complications of the problem:
a precise definition of the size-dependent conductivity that
can be used in calculations, the difficulty in analyzing the

many-body problem with nonlinear interactions, and associ-
ated problems with approximations, numerical challenges, etc.

In view of the above, we have have recently treated this
problem quantum mechanically [13–15]. To our mind this
approach provides a different perspective on the problem,
as well as allows us to make controlled and systematic
approximations. In particular, we have calculated the thermal
conductivity using the Kubo-Green formula for vibrational
chains with various polynomial interactions. Since transport
coefficients involve the lifetime of a quasiparticle state in a
crucial way, the relaxation rate �(q) (inverse liftime) of a
phonon with wave vector q, in particular its dependence on q,
is the key quantity in this calculation.

The phonon relaxation rate is calculated from the self-
energy �(q,ω) through the equation �(q) = −Im�(q,ωR

q ),
where ωR

q is the renormalized frequency of the phonon. �(q)
vanishes as the wave vector q goes to zero, �(q) ∼ qδ , with
the power δ > 1 (otherwise the phonons cannot be regarded as
well-defined quasiparticles). This makes the Kubo integral for
thermal conductivity divergent in one dimension. But one can
obtain the size dependence of the conductivity by introducing
a time cutoff, proportional to the system size N , in the Kubo
formula [1,7]. This gives the result α = 1 − 1/δ. If one follows
this procedure, then the universality of thermal conduction
is equivalent to the universality of δ, which is what we are
studying in this paper.

The quantum version for the quartic potential was first
analysed by us [13] following a crucial analysis of the
collision integral of the modes [a precise definition of the
term collision integral as used here is given later in Eq. (11)]
by Pereverzev [11], whose classical treatment also led to a
similar formulation. The key point here is that the noninteger
power in the q dependence of the phonon relaxation rate �(q)
or self-energy arises due to the singular behavior of a second-
order diagram as q → 0. It turns out that all the higher-order
diagrams, vertex corrections, etc., have an analytic dependence
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on q and give rise to contributions of order q2 to �(q). These
are therefore subdominant at small q, and this method yields
δ = 5/3 corresponding to α = 2/5 for quartic nonlinearity.
Another important point of the calculation is that the nonzero
contribution comes from only the umklapp process, a feature
that is not accounted for in classical calculations using mode-
coupling analysis.

For the cubic potential a different set of arguments needs
to be employed [14]. The second-order diagram does not
contribute to the imaginary part of the self-energy as the
wave-vector conservation and energy conservation cannot
be satisfied together in a three-phonon process. Here we
employed a self-consistent approach by allowing phonon lines
a width, which is then calculated self-consistently through
an integral equation [14]. This approach gives the phonon
relaxation rate to be �(q) ∝ q3/2. This approach could be
extended to higher-order potentials with odd nonlinearity,
which give rise to numerous new processes but also include the
second-order diagram with renormalized cubic interaction. It
again transpires that except for this second-order diagram for
the cubic potential, the other processes yield analytic contribu-
tions O(q2) to give leading contribution proportional to q3/2.
This enabled us to establish the existence of a universality class
for thermal conduction and phonon relaxation corresponding
to potentials containing any odd-power potential.

In this paper our aim is to analyze other even-power
potentials to see if they follow a universal behavior. Our
strategy is again to analyze the new processes that can occur
with higher-order potentials and check if they can give rise
to any singular dependences as q → 0. Among the numerous
new processes that arise with the higher-order potentials, one
of them has the same structure as the one that becomes singular
for the quartic potential. Apart from this one, we argue that
the other processes give rise to analytic contributions of the
form �(q) ∝ q2, though the explicit calculations are possible
for fourth- and sixth-order potentials only. We also report
numerical calculation of thermal conductivity for nonlinear
potentials with even powers n = 4, 6, and 8. Within error
margins of these calculations all these potentials show nearly
identical values for α. We also confirm the previous numerical
results for the cubic potential. For potentials with a leading
odd-power nonlinearity and a lower bound, it suffices to
consider the n = 3 case, as such a potential has a generic cubic
order term. This makes the case for two universality classes for
thermal conduction in vibrational chains, one corresponding
to even potentials with α = 2/5 and the other to potentials
containing an odd power with α = 1/3.

II. THE HAMILTONIAN

Consider a chain of N oscillators where only the nearest
neighbors interact. The Hamiltonian of the system is given by

H =
N∑

l=1

p2
l

2m
+ V (xl − xl−1), (1)

where pl and xl are the momentum and position coordinates
of the lth oscillator. We take the pair potential V to have the

form

V (x) = 1

2
mω2

0x
2 + g0

n!
xn, (2)

n being an even integer. We use periodic boundary conditions
and introduce phonon operators,

ak =
√

mω0ωk

2h̄

(
xk + i

pk

mω0ωk

)
,

(3)
ω(k) = 2| sin(k/2)|,

where xk and pk are the usual Fourier transforms of xl and pl ,
respectively. The Hamiltonian, in units of h̄ω0, becomes

H =
∑

k

ωk

(
a
†
kak + 1

2

)
+ g

n!Nn/2−1

×
∑
{ki }

v(k1, . . . ,kn)	(k1 + · · · + kn)Ak1, . . . ,Akn
, (4)

γk = 1 − eik, v(k1, . . . ,kn) =
n∏

l=1

γkl√
ωkl

,

(5)

g = g0

h̄ω0

(
h̄

2mω0

)n/2

, Ak = ak + a
†
−k.

Further 	(k) is unity when k = 2πj , where j is an integer or
else it is zero.

III. PHONON RELAXATION RATE

As mentioned above the noninteger power dependence qδ

of relaxation rate �(q) for the n = 4 potential arises due to
a scattering process already seen at the second order. This
corresponds to the diagram given in Fig. 1(a) with three
internal lines joining the two interaction vertices. For this
diagram the collision integral diverges as q → 0 and leads
to the relaxation rate of the form �(q → 0) ∼ q5/3 for small
q [13]. The other contributions like vertex corrections were
found to yield analytical corrections, which did not change the
leading-order wave-vector dependence of �(q). This leads us
to first examine the second-order self-energy diagrams for the
higher-order potentials as well.

For even potentials with n = 6,8, . . . , the second-order
diagrams that contribute to the relaxation rate can have two
kinds of lines. The first kind are those that join the two
interaction vertices to be termed as v lines. The second kind
are those that form loops on each vertex. Note that there
must be the same number m of loops on the two vertices.
These are shown in Figs. 1(b) and 1(c). What matters for our
discussion is the number r of the v lines in the diagram, as
the loops simply contribute to renormalization of the coupling

(a) (b) (c)

FIG. 1. Second-order self-energy diagrams. Lines represent un-
perturbed Green’s functions D0. (a) Second-order diagram for n = 4.
The other two diagrams are for n = 6: (b) with five v lines and
(c) with three v lines and one phonon loop on each vertex.
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of a lower-order potential. To illustrate the point consider the
sixth-order potential. There are two kinds of diagrams, one
with five v lines [Fig. 1(b)] and one with three v lines and
a loop at each vertex [Fig. 1(c)]. Clearly Fig. 1(c) is like the
self-energy of the fourth-order potential with renormalized
coupling. Thus the number of v lines is the decisive factor for
determining the analytic behavior of the diagram. For the nth
order potential the number of v lines, r = n − 1 − 2m, varies
from n − 1 to 3 in diagrams that contribute to the relaxation
rate.

For any even n � 4, we have one diagram of the type in
Fig. 1(c) with r = 3 which is qualitatively equivalent to the n =
4 case. We will now argue that the contributions from diagrams
with r > 3 are all analytic and lead to �(q → 0) ∼ q2.

The self-energy contribution for a diagram with r v lines
and m loops on each vertex is given by

�(2)(q,τ ) = g2
m

r!Nr−1

∑
k1,...,kr

|v(−q,k1, . . . ,kr )|2

×	(−q + k1 + · · · + kr )
r∏

l=1

D0(kl,τ ), (6)

where gm denotes the renormalized coupling and D0(kl,τ ) the
free phonon Green’s function given by

D0(k,τ ) =
∑
s=±

ns(k)esωkτ , (7)

where n−(ω) = (eβω − 1)−1 and n+(ω) = 1 + n−(ω), and β

is the inverse temperature. The relaxation rate is obtained
as �(q) = −Im�(q,iwn → ωq + i0+), where �(q,iωn) =∫ β

0 dτeiωnτ�(q,τ ). Here ωn = 2nπ/β are the Matsubara
frequencies. Choosing the Brillouin zone [0,2π ) and using
wave-vector conservation, we get

�r (q) = πg2
m

r!
ωq(1 − e−βωq )

∑
{sl}

r−1∏
l=1

∫ 2π

0

dkl

2π
ωkl

nsl
(ωkl

)

×ωkr
nsr

(ωkr
)δ

(
ωq − srωkr

− sr−1ωkr−1 − R
)
, (8)

where R = ∑r−2
l=1 slω(kl) and

kr = sr (2jπ − P + q − sr−1kr−1) , (9)

with P = ∑r−2
l=1 slkl . The integer j ≡ j ({sl},{kl},q) is chosen

so that kr lies within [0,2π ). The process corresponding to
j = 0 is normal while j �= 0 corresponds to umklapp. The
prefactor ωq(1 − e−βωq ) makes �r (q) proportional to ω2(q) for
small q, provided the integral on the right-hand side of Eq. (8)
is finite at q = 0. We shall now show that this is so for r > 3.
To see this, note that factors of n(ωk)ωk in the integrand do not
affect the singular behavior of the integral at q = 0, as they
are rather smooth as a function of their variables. To analyze
the singular behavior of the integral, we may replace them by
constants. The energy δ-function leaves us with an integral
over r − 2 variables which we choose to be k1, . . . ,kr−2. The
δ- function defines a surface S ≡ (k1, . . . ,kr−2) by

f ≡ ω(q) − sr−1ω(kr−1) − srω(kr ) − R = 0, (10)

where kr is given by Eq. (9). We now define the collision
integral I (q) as follows

�r (q → 0) ∼ ω2(q)I (q),

I (q) =
∑
{sl}

∫
S

dk
1

|J (q,k1, . . . ,kr−2,{sl})| , (11)

where dk = dk1, . . . ,dkr−2 and the Jacobian J = (∂/∂kr−1)f
is given by

J = 2

{
sin2

(
2jπ − P + q

4

)
− 1

4

[
R

2
− sin

(
q

2

)]2 } 1
2

.

(12)
The contributions from all the solutions kr−1 of Eq. (10) are
to be included. The quantity whose square root is taken is
guaranteed to be non-negative in S by Eq. (10). Note that J

depends on {sl,kl} through R and P and the integer j as defined
in Eq. (9). We need to identify the values of j corresponding to
each k-space point, but we note that the form of J depends only
on whether j is even or odd: the first term within the brackets is
sin2[(q − P )/4] if j is even, otherwise it is cos2[(q − P )/4].
Hence we analyze zeros of these two different forms of J ; if
all those singularities are integrable then I (q) would also be
finite.

We now examine if the (r − 2)-dimensional integrals in
Eq. (11) are finite at q = 0 for all possible sets of values for
{sl}. The singularities of the integral come from the zeros
of J . We expect the zeros to lie on an (r − 3)-dimensional
subspace Ssing in general. Suppose the gradient of J 2, denoted
by ∇J 2, is nonzero at a point k∗ ∈ Ssing. A Taylor expansion
around k∗ yields J 2 = ∇J 2 · (k − k∗) + higher order terms.
Then we choose a local coordinate system in the following
way. Define one of the coordinates to be along the normal to
Ssing at k∗ as p1(k∗) = ∇J 2 · (k − k∗). The other coordinates
p2(k∗), . . . ,pr−2(k∗) are chosen to form a local coordinate
system in Ssing at k∗. Then, up to lowest order, J ∼ √

p1(k∗),
around this point. The contribution to the integral from a small
neighborhood around k∗ may be estimated as

Ik∗ ∝
∫

dp1(k∗)
1√

p1(k∗)
, (13)

which is finite. Now consider points in Ssing where ∇J 2 is
zero. In general, these points form an (r − 4)-dimensional
subspace of Ssing as the additional condition ∇J 2 = 0 has to
be satisfied. For this subspace, the procedure described above
no longer works and we need to explicitly study the nature
of the singularity there. We consider r = 3 and r = 5 cases
explicitly in the following.

For r = 3, we have Jq=0 = 2 cos2(k1/4) for all {sl} and
Ssing is just the point k1 = 2π . The gradient of J 2 is zero
at this point and we have J (2π − k1) ∼ k2

1. This singularity is
nonintegrable and we have to study the behavior of the integral
in Eq. (11) for finite q as q → 0. This is done in Ref. [13] to
obtain I (q → 0) ∼ q−1/3.

We next consider a special case of r = 5. Choose s1 = s2 =
s3 = 1 and s4 = s5 = −1, which correspond to two phonons
from the bath scattering the external phonon to produce three
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(c) (d)

(a) (b)

FIG. 2. Plots of J 2(k1,k2,k3) and its zero-value contours.
(a) J 2(k1,k2,0), (b) zero-value contour of J 2(k1,k2,0), (c)
J 2(k1,k2,2π ), and (d) zero-value contour of J 2(k1,k2,π ). In the
contour plots, only the light-colored region can be part of S whereas
J 2 is negative in the darker region.

phonons. For odd j , the Jacobian is obtained as

J = 2

{
cos2

(
k1 + k2 + k3 − q

4

)
− 1

4

[
sin

(
k1

2

)

+ sin

(
k2

2

)
+ sin

(
k3

2

)
− sin

(
q

2

)]2} 1
2

. (14)

Here Ssing is a two-dimensional subspace of S. To see this,
we plot J 2(k1,k2,0) in Fig. 2(a) and its zero-value contour in
Fig. 2(b). This contour is the subset of Ssing at k3 = 0 and
it separates the (k1,k2,0) space into two regions: only the
light-colored region that lies outside the contour can be part of
S whereas within the darker region, enclosed by the contour,
J 2 < 0. In Fig. 2(a) it can be seen that the J 2 surface will cut a
zero-value surface at an angle, i.e., with nonzero gradient,
except at points (0,2π,0) and (2π,0,0). These two points
belong to the one-dimensional subspace where ∇J 2 is zero.

Let us consider the point (0,2π,0). In variables (k1,k2 =
2π − q2,k3), we have J 2 ≈ −q2(k1 + k3), up to the lowest
order. This region does not belong to S since J 2 < 0 there. But
the neighborhood Bδ = {(0,2π − q2,0),q2 < δ}, with δ being
infinitesimal and positive, belongs to S with J ≈ q2

2/8 making
the q2 integration divergent. However, the three-dimensional
volume measure associated with this neighborhood is zero.
(Contrast this with the divergent integral

∫
dxx−2 where

the neighborhood of the singular point x = 0 has nonzero
measure.) In this situation, we take the contribution to the
integral in a limiting sense: consider a sequence of integrals
Ik,n, for positive integers n, defined as the contribution to I (q)
from Bδ,n = Bδ\B δ

n
and take limn→∞ Ik,n. Since Bδ,n does not

contain the point q2 = 0, we have finite 1/J here and Ik,n = 0
since the volume measure is zero. Therefore limn→∞ Ik,n = 0
as well. Similar analysis gives a finite contribution from the
point (2π,0,0) as well.

At other values of k3, the shape of the zero-value con-
tour changes, but we can perform similar analysis to find
finite contribution to the integral. For example, Fig. 2(c)
shows plots of J 2 at k3 = 2π and Fig. 2(d) the zero-value
contour-plot of J 2 at k3 = π . Note that for k3 = 2π , the
points where ∇J 2 is zero form the line (k1,k1,2π ) around
which J 2(k1,k1,2π − q3) ≈ −2 sin(k1/2) (cos(k1/2) + 1) q3,
upto leading order, is negative unless q3 = 0. But in the
neighborhood {(k1 + q1,k1 + q2,2π ),|qi | < δ}, having zero
three-dimensional volume, we have J 2 ≈ (q1 − q2)2/4 being
positive. Again we estimate the contribution to I (q) to be finite,
following the limiting procedure discussed earlier.

Now, we try to see some generic features with the help of the
contour plots in Fig. 2. One feature we notice for these cases is
that the subspace in which ∇J 2 = 0 lies on the boundary of the
cube [0,2π ] × [0,2π ] × [0,2π ]. For example, note the points
(0,2π,0),(2π,0,0),(k1,k1,2π ), etc. The integration space S

only contains the region that lies outside the contour, the
light-colored region in the contour plots. But at the boundary
an infinitesimal neighborhood in S around the singular points
has a volume measure equal to zero and hence the contribution
to the integral is zero as discussed earlier. We have checked
this for a finite set of values of k3, but our guess is that the
feature is true for all values of k3.

The analysis of J for even j follows a similar path. For
example J 2 for k3 = 2π is exactly the same as the odd j

case with k3 = 0. And we find a finite contribution from this
also. So, the contribution to I (q) is finite for this particular
set of {si}. We expect the contribution from other {si}, many
of which allow for zero or very small volumes of integration
(regions where J 2 > 0), also to be finite, thus concluding that
the contribution from the r = 5 diagrams is proportional to
q2. Continuing the analysis for higher r values this way is
impractical. However, with increased dimensionality of the
integrals, we find it highly unlikely that diagrams with r > 5
will show singular behavior. From these considerations we
surmise that only the diagram with three v lines has a singular
behavior, which gives the leading-order phonon relaxation rate
�(q → 0) ∼ q5/3. Further support for this analysis is provided
by numerical computations on thermal conductivity for chains
with polynomial potentials with powers n = 4, 6, and 8, which
we present in the next section.

IV. NUMERICAL COMPUTATIONS

We have performed a numerical study of the system using
a classical molecular dynamics simulation. The Hamiltonian
is given by Eq. (1) and the potential is taken to be of the form
given by Eq. (2). The system was attached to Nosé-Hoover
thermostats at the two ends [16,17]. This procedure introduces
two thermostat variables, ζ1 and ζN , and the dynamical
equations get modified as

d

dt
xi = pi/m,

d

dt
pi = F (xi − xi−1) − F (xi+1 − xi) − δi,1ζ1p1 − δi,NζNpN,

d

dt
ζ1 = p2

1

2T1
− 1,

d

dt
ζN = p2

N

2TN

− 1, (15)
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FIG. 3. (Color online) Dependence of the current density J on
the system size N for different nonlinearities, n, of the pair potential.
We have drawn two lines as an aid to the eye for comparison of
the data: the dotted and solid lines have slopes (in the log-log
scale) −3/5 and −2/3, corresponding to α = 2/5 and α = 1/3,
respectively.

where F (x) = −(d/dx)V (x) and T1 and TN are the tempera-
tures at ends 1 and N , respectively. The expression for local
heat flux can be obtained in the following way. Write the
Hamiltonian H = ∑

i hi , where the local energy is given by

hi = p2
i

2m
+ 1

2
[V (xi − xi−1) + V (xi+1 − xi)] . (16)

Then, the choice

ji = [hi,hi−1]PB = 1

2m
(pi + pi−1) F (xi − xi−1) (17)

satisfies the energy continuity equation dhi/dt = ji − ji+1.
Here [.,.]PB stands for Poisson bracket.

We define j to be the average of ji over all sites except
boundaries and the thermal conductivity can be estimated
using the formula

κ(N ) = jN/(T1 − TN ). (18)

For the simulation we choose m = ω0 = 1, T1 = 152, and
TN = 100. Also we take g0 = (n − 1)!/10 such that the
nonlinear part of F (x) becomes −0.1 xn−1. Equations (15)
are integrated using an adaptive-step-size-controlled method
that uses Runge-Kutta Pince-Dormand integration scheme,
provided by the GNU Scientific Library [18]. After neglecting
a transient time of 200 000, we calculate the average of ji over

time 500 000. The results for n = 3, 4, 6, and 8 are reported
in Fig. 3 for N up to 9216. For the case of n = 3, we add a
stabilizing term, x4/400, to the potential V (x). To analyze the
dependence of N , we plot j as a function of N and see that
j ∼ Nα−1. Thus we estimate α ≈ 2/5 for n = 4, 6, and 8 and
α ≈ 1/3 for n = 3.

V. CONCLUSION

To conclude, we have presented an analysis to show that the
relaxation rate �(q) of phonons at small wave-vectors q for
even polynomial interaction potentials has the form �(q) ∝
q5/3. The basis for this conclusion lies in the circumstance
that this fractional exponent arises due to just one scattering
process for which the scattering integral diverges as q → 0.
Though the detailed calculations are for potentials for powers
n = 4 and n = 6, arguments based on diagrammatic analysis
provide strong evidence that this behavior is generic to all
even-power potentials. Our theoretical analysis is bolstered
by numerical computations for thermal conductance for even
potentials of powers n = 4, 6, and 8. All these potentials
show exponents nearly equal to 2/5 for the divergence of
the conductivity. In an earlier paper, we had found a similar
situation for cubic and higher odd interactions [14]. For these,
�(q) ∝ q3/2 for small q. We also report here numerical results
for the conductivity of a chain with cubic potential with the
addition of a stabilizing quartic potential. Here we find a
distinct value close to 1/3 for the exponent. This allows us
to argue that there are two universality classes for thermal
conduction of vibrational chains which just depend on whether
the interaction potential is even or not. In a sense these results
match the hydrodynamic analysis of Lee-Dadswell et al. [8]
and the mode-coupling analysis of Delfini et al. [10], but
with a difference. The two α exponents in the above two
calculations are 1/2 and 1/3, whereas we find them to be
2/5 (even) and 1/3 (odd). For this reason it is interesting
to contrast our approach with those mentioned above. In our
approach the key input is the dispersion of the modes and the
momentum-energy conservation in the collision integral. So
the difference can possibly be due to the umklapp nature of
the singular scattering process and the nonlinear dispersion
of modes. The hydrodynamic and classical mode-coupling
approaches ignore the lattice effects by taking the dispersion
of modes to be linear and not accounting for the umklapp
process.
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